[发明专利]一种基于transformer模型编码器的语音情感特征提取方法有效
申请号: | 202011470115.9 | 申请日: | 2020-12-14 |
公开(公告)号: | CN112466326B | 公开(公告)日: | 2023-06-20 |
发明(设计)人: | 金赟;俞佳佳;马勇;李世党;姜芳艽 | 申请(专利权)人: | 江苏师范大学 |
主分类号: | G10L25/03 | 分类号: | G10L25/03;G10L25/30;G10L25/45;G10L25/63;G10L25/90 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 李悦声 |
地址: | 221116 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于transformer模型编码器的语音情感特征提取方法,适用于人工智能和语音情感识别领域。首先利用sincnet滤波器从原始语音波形中提取低级语音情感特征,然后利用多层transformer模型编码器对低级语音情感特征进一步学习;其中改进后的transformer模型编码器为常规transformer模型编码器前添加一层sincnet滤波器,即一组具有带通滤波器的参数化sinc函数,利用sincnet滤波器完成语音原始波形信号的低级特征提取工作,并使网络更好的捕捉重要的窄带情感特征,从而获得更深层次包含全局上下文信息的帧级情感特征。 | ||
搜索关键词: | 一种 基于 transformer 模型 编码器 语音 情感 特征 提取 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏师范大学,未经江苏师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011470115.9/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法