[发明专利]一种基于神经网络与深度学习的C/C++漏洞静态检测方法有效
申请号: | 202011519232.X | 申请日: | 2020-12-21 |
公开(公告)号: | CN112560036B | 公开(公告)日: | 2022-11-29 |
发明(设计)人: | 钱叶魁;付才;韩兰胜;杨瑞朋;黄浩;雒朝峰;杜江;时晨航 | 申请(专利权)人: | 中国人民解放军陆军炮兵防空兵学院;华中科技大学 |
主分类号: | G06F21/56 | 分类号: | G06F21/56;G06N3/04;G06N3/08 |
代理公司: | 中国兵器工业集团公司专利中心 11011 | 代理人: | 辛海明 |
地址: | 450052 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于神经网络与深度学习的C/C++漏洞静态检测方法,属于信息安全领域。本发明对待检测的源码进行数据清洁和代码切片;将代码切片转换为CVDF‑LZW编码的输入向量;将输入向量转化为等长的输入,并进行归一化处理;将归一化后的向量的关键字信息输入到14个神经元中,输出是一个14维向量;将归一化后的向量输入不同的神经网络,输出是漏洞特征向量中相应操作维度向量;将14维向量和操作维度向量整合成35维漏洞特征向量;在漏洞特征向量中以非全连接的形式提取有关联的神经元,通过线性函数转换得到一个6维的输出向量,通过softmax多分类层将对应的漏洞类型特征值转换为相应的概率值。本发明可以面向多种类漏洞实现高精度检测,提高效率和适应性。 | ||
搜索关键词: | 一种 基于 神经网络 深度 学习 c++ 漏洞 静态 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军陆军炮兵防空兵学院;华中科技大学,未经中国人民解放军陆军炮兵防空兵学院;华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011519232.X/,转载请声明来源钻瓜专利网。