[发明专利]一种基于神经网络与深度学习的C/C++漏洞静态检测方法有效

专利信息
申请号: 202011519232.X 申请日: 2020-12-21
公开(公告)号: CN112560036B 公开(公告)日: 2022-11-29
发明(设计)人: 钱叶魁;付才;韩兰胜;杨瑞朋;黄浩;雒朝峰;杜江;时晨航 申请(专利权)人: 中国人民解放军陆军炮兵防空兵学院;华中科技大学
主分类号: G06F21/56 分类号: G06F21/56;G06N3/04;G06N3/08
代理公司: 中国兵器工业集团公司专利中心 11011 代理人: 辛海明
地址: 450052 河*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于神经网络与深度学习的C/C++漏洞静态检测方法,属于信息安全领域。本发明对待检测的源码进行数据清洁和代码切片;将代码切片转换为CVDF‑LZW编码的输入向量;将输入向量转化为等长的输入,并进行归一化处理;将归一化后的向量的关键字信息输入到14个神经元中,输出是一个14维向量;将归一化后的向量输入不同的神经网络,输出是漏洞特征向量中相应操作维度向量;将14维向量和操作维度向量整合成35维漏洞特征向量;在漏洞特征向量中以非全连接的形式提取有关联的神经元,通过线性函数转换得到一个6维的输出向量,通过softmax多分类层将对应的漏洞类型特征值转换为相应的概率值。本发明可以面向多种类漏洞实现高精度检测,提高效率和适应性。
搜索关键词: 一种 基于 神经网络 深度 学习 c++ 漏洞 静态 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军陆军炮兵防空兵学院;华中科技大学,未经中国人民解放军陆军炮兵防空兵学院;华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011519232.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top