[发明专利]基于自学习的植物叶片叶脉分割方法和装置有效

专利信息
申请号: 202011528023.1 申请日: 2020-12-22
公开(公告)号: CN112581483B 公开(公告)日: 2022-10-04
发明(设计)人: 张长水;李磊 申请(专利权)人: 清华大学
主分类号: G06T7/12 分类号: G06T7/12
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 韩海花
地址: 10008*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提出一种基于自学习的植物叶片叶脉分割方法和装置,涉及数据处理技术领域,方法包括:通过深度神经网络模型对已标注的植物叶片样本进行训练,获取特征提取模块、粗糙叶脉提取模块和精细叶脉提取模块对无标注的植物叶片图片进行处理,获取粗糙叶脉图和精细叶脉图;将粗糙叶脉图和精细叶脉图进行融合,获取叶脉分割图作为无标注的植物叶片图片的标注信息并根据预设损失函数对深度神经网络模型进行训练,以使已训练的深度神经网络模型对待处理植物叶片图片进行处理获取植物叶片分割结果。由此,使用极少量的标注图片让模型自动地去学习大量未标注图片中的信息,从而提高泛化性,提高植物叶片叶脉分割的效率和准确性。
搜索关键词: 基于 自学习 植物 叶片 叶脉 分割 方法 装置
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011528023.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top