[发明专利]基于深度学习的透平机械叶型设计及性能预测方法有效
申请号: | 202011626975.7 | 申请日: | 2020-12-30 |
公开(公告)号: | CN112632728B | 公开(公告)日: | 2022-10-25 |
发明(设计)人: | 张荻;杜秋晚;杨立克;刘天源;谢永慧 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/27;G06N3/04;G06N3/08;G06F111/04;G06F111/08;G06F119/14 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 闵岳峰 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的透平机械叶型设计及性能预测方法,该方法包括搭建设计透平机械叶型的生成对抗神经网络GAN,训练GAN,使用生成器Generator生成叶型样本,搭建对叶型进行自动建模、网格划分、流场求解及性能评估的计算框架,使用自动化框架对样本叶型进行批量CFD计算获取气动性能参数集,各叶高截面叶型表面压力分布数据预处理,构建叶型气动性能预测的卷积神经网络CNN,训练CNN以及使用Generator、Predict Net和Score Net进行叶型设计及性能预测等9个步骤。本发明构建起一整套基于深度学习技术,从叶型设计参数到获得叶型型线、叶型表面压力分布,直至叶型气动性能指标的端到端设计与性能预测框架,显著提高了透平机械叶型设计及性能预测的效率。 | ||
搜索关键词: | 基于 深度 学习 透平 机械 设计 性能 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011626975.7/,转载请声明来源钻瓜专利网。