[发明专利]一种面向机器人的云边端架构下的深度学习模型分割方法有效
申请号: | 202011633386.1 | 申请日: | 2020-12-31 |
公开(公告)号: | CN112297014B | 公开(公告)日: | 2021-04-27 |
发明(设计)人: | 张北北;向甜;张鸿轩;李特;顾建军;朱世强 | 申请(专利权)人: | 之江实验室 |
主分类号: | B25J9/16 | 分类号: | B25J9/16 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 邱启旺 |
地址: | 310023 浙江省杭州市余*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了面向机器人的云边端架构下的深度学习模型分割方法,属于深度学习以及分布式计算领域。该方法首先将深度学习模型建模为一个有向无环图,有向无环图的节点代表深度学习模型层,节点之间的边代表深度学习模型层间的数据传输。其次,根据模型层分别在云边端上的处理时间为节点赋值,根据模型层间数据分别在云边、边端、云端之间的传输时间为节点之间的边赋值。进而,采用一个有向无环图最长距离算法对图中的节点进行分层,并逐层处理节点。对于一层中的每个节点,根据节点的输入边权重和节点权重,采用启发式策略,进行动态分割,并将分割后的深度学习模型分配给云边端计算设备,从而实现无精度损失的云边端分布式协同推理。 | ||
搜索关键词: | 一种 面向 机器人 云边端 架构 深度 学习 模型 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于之江实验室,未经之江实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011633386.1/,转载请声明来源钻瓜专利网。