[发明专利]数据驱动的深度学习模型泛化分析和改进在审
申请号: | 202080030272.X | 申请日: | 2020-03-10 |
公开(公告)号: | CN113711236A | 公开(公告)日: | 2021-11-26 |
发明(设计)人: | 金文;马梓力;张敏;戈帕尔·阿维纳什 | 申请(专利权)人: | 通用电气公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N20/10;G06N3/04;G06N3/08;G06K9/46;G06N5/00 |
代理公司: | 北京同立钧成知识产权代理有限公司 11205 | 代理人: | 杨贝贝;臧建明 |
地址: | 美国*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了用于评估和限定数据驱动的深度学习模型的范围的技术。在一个实施方案中,提供了一种机器可读存储介质,该机器可读存储介质包括可执行指令,该可执行指令在由处理器执行时促进操作的执行,该操作包括采用机器学习模型来提取包括在训练数据集中的第一训练数据特征和包括在目标数据集中的第一目标数据特征。该操作还包括基于对第一训练数据特征和第一目标数据特征之间的对应的分析,确定目标数据集是否在训练数据集的限定数据范围内,以及基于目标数据集是否在限定数据范围内,确定将目标数据集应用于使用训练数据集开发的目标神经网络模型是否将会生成具有可接受的准确度水平的结果。 | ||
搜索关键词: | 数据 驱动 深度 学习 模型 泛化 分析 改进 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于通用电气公司,未经通用电气公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202080030272.X/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置