[发明专利]一种基于模型与数据驱动融合的电池包荷电状态估计方法有效
申请号: | 202110050092.4 | 申请日: | 2021-01-14 |
公开(公告)号: | CN112858916B | 公开(公告)日: | 2023-10-13 |
发明(设计)人: | 胡晓松;王鹏;邓忠伟;唐小林;李佳承 | 申请(专利权)人: | 重庆大学 |
主分类号: | G01R31/367 | 分类号: | G01R31/367;G01R31/382;G01R31/36 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400044 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于模型与数据驱动融合的电池包荷电状态估计方法,属于电池技术领域。用于提高动力电池在复杂工况下SOC估计的准确性。电池在实际车载使用时,其工况复杂多变,单一的基于等效电路模型或基于数据驱动的估计方法难以保证良好的估计精度。因此,结合自适应扩展卡尔曼滤波AEKF和高斯过程回归GPR的各自优点,该融合算法能够在SOC初值不准确、不同工况、不同环境温度、不同老化状态、不同电流倍率等情况下依然有较好的SOC估计精度和鲁棒性。在动态工况下,AEKF算法的SOC估计精度优于GPR算法;与之相反,在恒流工况下,GPR算法的SOC估计精度优于AEKF算法。 | ||
搜索关键词: | 一种 基于 模型 数据 驱动 融合 电池 包荷电 状态 估计 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110050092.4/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置