[发明专利]基于卷积神经网络的全景深度估计方法有效

专利信息
申请号: 202110053166.X 申请日: 2021-01-15
公开(公告)号: CN112750155B 公开(公告)日: 2022-07-01
发明(设计)人: 何炳蔚;邓清康;胡誉生;张立伟;陈彦杰;林立雄 申请(专利权)人: 福州大学
主分类号: G06T7/55 分类号: G06T7/55;G06T3/40
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 陈明鑫;蔡学俊
地址: 350108 福建省福州市*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于卷积神经网络的全景深度估计方法,包括以下步骤:步骤S1:采集室外环境的RGB图像,深度图像,点云数据,并根据柱面投影原理将RGB图像以及深度图像拼接成为全景图像;步骤S2:构建卷积神经网络模型,并基于的得到全景图像训练,得到训练后的卷积神经网络模型;步骤S3:将待测的全景图像输入训练后的卷积神经网络模型,获得密集的全景深度预测图像。本发明能够调整优化全景图像的局部细节,从而估计出密集而且准确的全景深度图像。
搜索关键词: 基于 卷积 神经网络 全景 深度 估计 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110053166.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top