[发明专利]一种基于机器学习的蠕变疲劳寿命预测方法在审
申请号: | 202110072083.5 | 申请日: | 2021-01-20 |
公开(公告)号: | CN112651164A | 公开(公告)日: | 2021-04-13 |
发明(设计)人: | 王润梓;王栋铭;张显程;程吕一;李凯尚;张勇;涂善东 | 申请(专利权)人: | 华东理工大学 |
主分类号: | G06F30/25 | 分类号: | G06F30/25;G06F30/27;G06N3/00;G06N3/04;G06N20/00;G06F111/06;G06F119/04;G06F119/14 |
代理公司: | 上海智信专利代理有限公司 31002 | 代理人: | 邓琪 |
地址: | 200237 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于机器学习的蠕变疲劳寿命预测方法,包括:获取待预测的蠕变疲劳寿命数据组,分为训练集和测试集,每一个蠕变疲劳寿命数据组均包括实验蠕变疲劳工况参数、中间计算参数和相对应的蠕变疲劳对数寿命;提供ELM模型,利用训练集中的数据通过粒子群优化算法得到ELM模型的最优权重矩阵、最优偏置向量,进而得到蠕变疲劳寿命预测模型;根据测试集中的蠕变疲劳寿命数据组对所述蠕变疲劳寿命预测模型的精度进行验证。本发明弥补了传统方法在预测蠕变疲劳寿命时精度低、成本高的不足,可充分利用变异PSO算法优化ELM模型权重矩阵和偏置向量的优势,具有误差小、成本低、效率高的优点。 | ||
搜索关键词: | 一种 基于 机器 学习 疲劳 寿命 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华东理工大学,未经华东理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110072083.5/,转载请声明来源钻瓜专利网。
- 上一篇:背心袋悬挂撑口装置
- 下一篇:一种检测火车铁轨磨损机器人