[发明专利]一种基于改进的Focal损失函数的图像识别方法有效

专利信息
申请号: 202110117456.6 申请日: 2021-01-28
公开(公告)号: CN112819063B 公开(公告)日: 2022-07-26
发明(设计)人: 周世界;孙广鹏 申请(专利权)人: 南京邮电大学
主分类号: G06V10/764 分类号: G06V10/764;G06K9/62;G06V10/774;G06V10/82;G06N3/04;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 柏尚春
地址: 210000 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 专利公开了一种基于改进的Focal损失函数的图像识别方法,在已有的Focal损失函数的基础上,对Focal损失函数的调制因子进行改进,使函数对困难样本的关注度更高,对简单样本的关注度相对下降;然后,在基于Focal损失函数的卷积神经网络模型的基础上,对剩余负样本集进行预测,筛选所有困难样本,并分成N等份,分别加入原训练集,形成N个新训练集,之后训练多个模型,根据N个模型的投票选择,确定最终预测图片标签的结果。本发明在原有的Focal损失函数的基础上,对困难样本的关注度更高,提高了模型泛化能力;在负样本过多的情形下,利用原有模型筛选出困难样本加入训练集,既提高了模型的准确性,又充分利用了可用样本,也减少了训练模型时的计算量。
搜索关键词: 一种 基于 改进 focal 损失 函数 图像 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110117456.6/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top