[发明专利]基于高斯-拉普拉斯金字塔的无监督学习X光图像增强方法有效

专利信息
申请号: 202110130545.4 申请日: 2021-01-29
公开(公告)号: CN112819716B 公开(公告)日: 2023-06-09
发明(设计)人: 汪航;孙宏滨;闵子秋;张旭翀;郑南宁 申请(专利权)人: 西安交通大学
主分类号: G06T5/00 分类号: G06T5/00;G06T5/30;G06T5/50;G06V10/74;G06N3/0455;G06N3/082;G06N3/088
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 闵岳峰
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于高斯‑拉普拉斯金字塔的无监督学习X光图像增强方法,该方法首先使用高斯‑拉普拉斯金字塔算法生成高对比度高噪声图像XGL;然后,将原始图像Xori输入至X光图像增强网络中,得到网络输出图像Xnet;在整个过程中,使用对比度相似度损失函数计算图像Xnet与图像XGL之间的对比度相似度值,使用结构相似度损失函数计算图像Xnet与原始图像Xori之间的结构相似度值,将两者乘以相应的系数后相加得到总相似度值,不断迭代优化使之收敛至最小。最终完成优化,满足要求的生成图像Xnet即为最终的输出图像Xoutput。与现有X光图像增强方法相比,本发明处理后的图像对比度增强幅度合适、图像局部和整体的语义信息完整,同时处理后的图像结构平滑,噪声少,整体图像质量高。
搜索关键词: 基于 拉普拉斯 金字塔 监督 学习 图像 增强 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110130545.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top