[发明专利]一种强化学习自动感知权重分布的卷积神经网络量化方法在审

专利信息
申请号: 202110134308.5 申请日: 2021-02-01
公开(公告)号: CN112733964A 公开(公告)日: 2021-04-30
发明(设计)人: 任鹏举;涂志俊;马建;夏天;赵文哲;陈飞;郑南宁 申请(专利权)人: 西安交通大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/063;G06N3/08;G06N5/04
代理公司: 北京中济纬天专利代理有限公司 11429 代理人: 覃婧婵
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 公开了一种强化学习自动感知权重分布的卷积神经网络量化方法,方法中,将每层批处理操作的参数与卷积操作的权重融合得到融合后的权重和偏置,获取浮点卷积神经网络模型中每一层融合后的权重的分布信息;根据每层权重的分布信息强化学习自动搜索最优的每层权重缩放系数,基于每层权重缩放系数将浮点权重量化成INT8类型数据;输入校准数据集,每输入一组数据记录每层输出特征图,选取众数作为每层输出特征图的缩放系数,根据每层权重的缩放系数和每层输出特征图的缩放系数计算得到每层偏置的缩放系数以将浮点的偏置量化为INT32类型的偏置,基于INT8类型数据、INT32类型的偏置和总的缩放系数构建前向推理过程完成量化。
搜索关键词: 一种 强化 学习 自动 感知 权重 分布 卷积 神经网络 量化 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110134308.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top