[发明专利]一种基于元学习的弱监督图像多标签分类方法有效

专利信息
申请号: 202110162956.1 申请日: 2021-02-05
公开(公告)号: CN113033603B 公开(公告)日: 2022-11-15
发明(设计)人: 陈刚;陈珂;董合德;寿黎但;骆歆远 申请(专利权)人: 浙江大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/82;G06N3/04;G06N3/08
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 邱启旺
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于元学习的弱监督图像多标签分类方法,属于图像处理技术领域。该方法为解决因标签缺失无法有效建模标签依赖关系问题,提出一个基于标签信息增强的图像多标签分类模型,采用编码‑解码架构的神经网络,以序列标注的形式,依次判断标签序列中的标签是否相关,获得图像的相关标签。应对弱监督环境存在的监督信息不足导致模型过拟合现象,本发明提出了基于元学习的教师‑学生网络架构训练方法,进一步提高了图像标注的准确率。
搜索关键词: 一种 基于 学习 监督 图像 标签 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110162956.1/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top