[发明专利]一种基于深度学习的卫星频谱感知数据重构方法有效
申请号: | 202110175322.X | 申请日: | 2021-02-09 |
公开(公告)号: | CN112819082B | 公开(公告)日: | 2022-06-17 |
发明(设计)人: | 丁晓进;冯李杰;张更新;吴尘 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 彭雄 |
地址: | 210003 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的卫星频谱感知数据重构方法,结合了异常数据修复算法与深度卷积神经网络,包括数据预处理、数据重建、实时重建性能评估三个部分;数据预处理是将高分辨率频谱数据依次进行异常数据修复、降采样和数据匹配操作,低分辨率数据依次进行异常数据修复和数据匹配操作;数据重建步骤是利用历史高分辨率数据进行模型训练,将实时传输的低分辨率频谱输入到已经训练好的模型中,完成超分辨率重建;实时重建性能评估步骤是利用传输的少量高分辨率频谱数据评估数据重建的性能,以确定是否要重新进行模型训练。本方法可将低分辨率频谱数据重建为高分辨率频谱数据,从而有效降低星地传输数据量,减缓星地间数据传输压力。 | ||
搜索关键词: | 一种 基于 深度 学习 卫星 频谱 感知 数据 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110175322.X/,转载请声明来源钻瓜专利网。