[发明专利]一种单隐层ReLU神经网络局部极小值的求解方法在审
申请号: | 202110187212.5 | 申请日: | 2021-02-10 |
公开(公告)号: | CN112926727A | 公开(公告)日: | 2021-06-08 |
发明(设计)人: | 刘波;孙雄飞 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 刘萍 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种单隐层ReLU神经网络局部极小值求解方法,属于深度学习理论领域,用于解决ReLU神经网络优化的不确定性的问题,包括构建单隐层ReLU神经网络;利用输入样本和ReLU激活函数的特性进行权值空间区域度划分,并计算每个区域权值和每个样本的点积是否大于0;根据每个区域的权值和样本点积的情况计算每个区域的局部极小值;根据局部极小值的解的情况判断局部极小值的真实性,对于唯一的局部极小值可以直接判断是否与初始化定义区域内的任何点都在每个输入样本的同一侧,对于连续的解可以判断这个连续的解是否在它所定义的区间内,判定的方法是求半平面的交是否为空,对于半平面求交的问题可以转化成凸包问题方便求解。 | ||
搜索关键词: | 一种 单隐层 relu 神经网络 局部 极小 求解 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110187212.5/,转载请声明来源钻瓜专利网。