[发明专利]一种基于组合自注意的图卷积知识表示学习模型CompSAGCN的预测方法在审

专利信息
申请号: 202110219529.2 申请日: 2021-02-26
公开(公告)号: CN112836065A 公开(公告)日: 2021-05-25
发明(设计)人: 汪璟玢;陆玉乾 申请(专利权)人: 福州大学
主分类号: G06F16/36 分类号: G06F16/36;G06N5/02;G06N3/04
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 钱莉;蔡学俊
地址: 350108 福建省福州市*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于组合自注意的图卷积知识表示学习模型CompSAGCN的预测方法,包括以下步骤:对于每一个实体e,使用图卷积神经网络构成的编码器来学习实体e的邻居信息,得到实体的增强表示ve,再使用自注意力卷积神经网络构成的解码器提取ve和关系向量vr的特征;然后将实体和关系的特征向量进行拼接,通过全连接层进行特征的压缩,将压缩后的特征表示与所有的实体向量相乘,最后使用sigmoid激活得到每个三元组的得分。本发明使用自注意力卷积能够获取到三元组结构本身的内部有效信息。
搜索关键词: 一种 基于 组合 注意 图卷 知识 表示 学习 模型 compsagcn 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110219529.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top