[发明专利]基于多种卷积神经网络融合的机场道面病害异物检测方法有效

专利信息
申请号: 202110228020.4 申请日: 2021-03-02
公开(公告)号: CN113111703B 公开(公告)日: 2023-07-28
发明(设计)人: 郭文彤;方宏远;钟山;王念念;朱锐;陈家将;曹顺林;张高翼 申请(专利权)人: 郑州大学
主分类号: G06V20/10 分类号: G06V20/10;G06V10/25;G06V10/26;G06V10/762;G06V10/80;G06V10/82;G06N3/045;G06N3/0464;G06N3/084
代理公司: 长沙楚为知识产权代理事务所(普通合伙) 43217 代理人: 李大为
地址: 450001 河南省郑*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于多种卷积神经网络融合的机场道面病害异物检测方法,其步骤包括:采集机场道面病害和异物图像;构建用于训练神经网络的机场道面病害异物数据库;搭建目标检测算法YOLOv3、Mask R‑CNN卷积神经网络;调整卷积神经网络超参数,直至收敛且误差损失值满足要求,保存此时的网络权重参数,完成YOLOv3、Mask R‑CNN卷积神经网络的训练;将训练后的YOLOv3、Mask R‑CNN卷积神经网络进行融合,构建机场道面病害和异物像素级别的智能分割模型;将测试图像输入到保存的模型中,输出机场道面的病害和异物的分割结果;统计分割结果的掩码对应图像的像素,输出机场道面病害和异物的语义信息。本发明具有更好的鲁棒性与泛化能力,能够提高机场道面病害异物的分割精度与效率。
搜索关键词: 基于 多种 卷积 神经网络 融合 机场 病害 异物 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州大学,未经郑州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110228020.4/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top