[发明专利]基于多种卷积神经网络融合的机场道面病害异物检测方法有效
申请号: | 202110228020.4 | 申请日: | 2021-03-02 |
公开(公告)号: | CN113111703B | 公开(公告)日: | 2023-07-28 |
发明(设计)人: | 郭文彤;方宏远;钟山;王念念;朱锐;陈家将;曹顺林;张高翼 | 申请(专利权)人: | 郑州大学 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/25;G06V10/26;G06V10/762;G06V10/80;G06V10/82;G06N3/045;G06N3/0464;G06N3/084 |
代理公司: | 长沙楚为知识产权代理事务所(普通合伙) 43217 | 代理人: | 李大为 |
地址: | 450001 河南省郑*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于多种卷积神经网络融合的机场道面病害异物检测方法,其步骤包括:采集机场道面病害和异物图像;构建用于训练神经网络的机场道面病害异物数据库;搭建目标检测算法YOLOv3、Mask R‑CNN卷积神经网络;调整卷积神经网络超参数,直至收敛且误差损失值满足要求,保存此时的网络权重参数,完成YOLOv3、Mask R‑CNN卷积神经网络的训练;将训练后的YOLOv3、Mask R‑CNN卷积神经网络进行融合,构建机场道面病害和异物像素级别的智能分割模型;将测试图像输入到保存的模型中,输出机场道面的病害和异物的分割结果;统计分割结果的掩码对应图像的像素,输出机场道面病害和异物的语义信息。本发明具有更好的鲁棒性与泛化能力,能够提高机场道面病害异物的分割精度与效率。 | ||
搜索关键词: | 基于 多种 卷积 神经网络 融合 机场 病害 异物 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州大学,未经郑州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110228020.4/,转载请声明来源钻瓜专利网。