[发明专利]一种基于深度强化学习的压缩机故障诊断方法有效
申请号: | 202110280530.6 | 申请日: | 2021-03-16 |
公开(公告)号: | CN113095367B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 陈焕新;韩林志;钟寒露;吴俊峰;李正飞;申利梅 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06F18/214 | 分类号: | G06F18/214;G06F16/2458 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 夏倩;李智 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化学习的压缩机故障诊断方法,属于压缩机故障诊断领域,包括:采集压缩机的实时运行数据,输入至已训练好的特征提取模型以提取特征;特征提取模型用于以无监督的方式提取输入数据的特征,特征用于表征在对应的运行数据下,压缩机处于各故障类型的概率;将实时运行数据的特征输入至已训练好的故障诊断模型以预测故障类型;故障诊断模型为深度强化学习模型,用于以特征为状态,预测在该状态下最大奖励值对应的动作,并将对应的故障类型作为故障诊断结果;深度强化学习模型的一个动作用于预测压缩机在给定状态处于某一种故障状态。本发明能够减少对专家经验和先验知识的依赖,提高压缩机故障诊断结果的精度和稳定性。 | ||
搜索关键词: | 一种 基于 深度 强化 学习 压缩机 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110280530.6/,转载请声明来源钻瓜专利网。