[发明专利]一种基于生成对抗网络的困难异常样本检测框架在审
申请号: | 202110285596.4 | 申请日: | 2021-03-17 |
公开(公告)号: | CN113159947A | 公开(公告)日: | 2021-07-23 |
发明(设计)人: | 王成;胡腾 | 申请(专利权)人: | 同济大学 |
主分类号: | G06Q40/04 | 分类号: | G06Q40/04;G06N3/04 |
代理公司: | 上海伯瑞杰知识产权代理有限公司 31227 | 代理人: | 孟旭彤 |
地址: | 200000 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于生成对抗网络的困难异常样本检测框架,解决了针对困难异常样本难以建立有效模型进行预测的问题,其技术方案要点是通过预处理数据,使用生成对抗网络,针对极度稀少的异常样本,学习到异常样本的分布,同时生成大量的异常和正常样本,利用这些生成的样本预训练一个分类模型,结合迁移学习的方法,使用真实数据对模型进行微调,最终得到所需分类模型以为困难异常样本检测提供支持,本发明的一种基于生成对抗网络的困难异常样本检测框架,可利用少量真实数据建立和训练异常检测模型,能进行微调后训练出工业可用的模型。 | ||
搜索关键词: | 一种 基于 生成 对抗 网络 困难 异常 样本 检测 框架 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110285596.4/,转载请声明来源钻瓜专利网。