[发明专利]基于改进YOLOv3的风机叶片缺陷识别方法在审

专利信息
申请号: 202110290817.7 申请日: 2021-03-18
公开(公告)号: CN112907565A 公开(公告)日: 2021-06-04
发明(设计)人: 张亚平;于傲;王方政;汤鹏;邹祖冰;朱小毅 申请(专利权)人: 中国长江三峡集团有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04
代理公司: 宜昌市三峡专利事务所 42103 代理人: 吴思高
地址: 100038 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于改进YOLOv3的风机叶片缺陷识别方法,训练YOLOv3模型,得到最优权重;将BN层的参数γ作为剪枝因子,选取合适的参数a,得到稀疏后的模型;根据预先设置的裁剪的阈值s,裁剪掉较小的参数γ对应的通道以及对应的参数,完成剪枝操作;剪枝后模型进行训练微调;将剪枝后模型卷积层的通道数调整到得到规整的网络模型;在规整的网络模型上减少相同的残差结构单元,从而减少密集链接,得到改进后的轻量化网络模型;使用改进后的轻量化网络模型训练风机叶片缺陷数据集,得到最优权重,从而实现风机叶片缺陷识别。本发明提方法通过改进的YOLOv3模型用于风机叶片的缺陷识别;大大提高了识别效率,解放劳动力,对电站运维具有重大的意义。
搜索关键词: 基于 改进 yolov3 风机 叶片 缺陷 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国长江三峡集团有限公司,未经中国长江三峡集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110290817.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top