[发明专利]一种基于改进的RetinaNet小目标检测方法有效
申请号: | 202110344831.0 | 申请日: | 2021-03-30 |
公开(公告)号: | CN113159063B | 公开(公告)日: | 2022-11-18 |
发明(设计)人: | 任利;唐昊;贾宇明;贾海涛;许文波;毛晨;鲜维富;田浩琨 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06V10/44 | 分类号: | G06V10/44;G06V10/82;G06N3/04;G06N3/08;G06T3/40 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进RetinaNet的小目标检测技术。该发明在许多基于深度学习的目标检测模型都具有一定的实用性,该专利以行人与车辆检测为说明案例。行人与车辆的检测在计算机视觉的实际较为广泛,且两类目标都呈现出目标尺寸下、检测场景复杂的特点。针对检测场景复杂的问题,在RetinaNet模型结构中的FPN加入了多层融合模块,多层融合可以一定程度解决特征金字塔结构中顶层语义信息被稀释的问题;针对小目标的问题,由于多尺度检测中小目标在特征层的选择灵活性较低,较大程度上依赖金字塔底层的细节信息,利用超分辨SR技术对底层特征信息进行补偿,使底层的细节信息和纹理信息等更加丰富。基于改进后的RetinaNet算法模型能够精准识别小尺寸目标,且模型也取得较高检测精度。 | ||
搜索关键词: | 一种 基于 改进 retinanet 目标 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110344831.0/,转载请声明来源钻瓜专利网。