[发明专利]基于深度学习和自适应阈值分割的焊球缺陷检测方法在审
申请号: | 202110356900.X | 申请日: | 2021-04-01 |
公开(公告)号: | CN115187500A | 公开(公告)日: | 2022-10-14 |
发明(设计)人: | 李春泉;陈雅琼;黄红艳;刘正伟;尚玉玲;侯杏娜;王侨 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/12;G06T7/136;G06T7/62;G06T5/00;G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 541004 广*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习和自适应阈值分割的焊球缺陷检测方法,用于实现对BGA焊球空洞和焊球区域的快速定位与检测,其特征在于,通过深度学习的方法对BGA焊球区域进行精确分割提取,对目标焊球区域制作BGA标签数据集,并进行增强操作增加网络泛化能力,对X‑Ray的BGA原图进行平滑处理,与神经网络对BGA焊球区域分割的结果图进行逻辑与运算提取焊球内部的空洞,对噪声干扰区域进行区域填充运算,将填充后的空洞与神经网络得到的焊球区域轮廓进行边缘提取,计算焊球内部空洞与整个焊球面积占比并判断其合格率,本发明的方法能针对BGA焊球在X‑Ray检测中存在复杂背景干扰的情况,对BGA焊球空洞和焊球区域进行快速定位和检测,该方法具备强大的适应性。 | ||
搜索关键词: | 基于 深度 学习 自适应 阈值 分割 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110356900.X/,转载请声明来源钻瓜专利网。