[发明专利]一种基于EBSD与深度学习方法的钢铁材料性能预测方法有效
申请号: | 202110368798.5 | 申请日: | 2021-04-06 |
公开(公告)号: | CN113033106B | 公开(公告)日: | 2023-09-19 |
发明(设计)人: | 徐伟;任达;魏晓蓼;沈春光;黄健;张朕;王晨充 | 申请(专利权)人: | 东北大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06F119/02;G06F119/14 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 李珉 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于EBSD与深度学习方法的钢铁材料性能预测方法,涉及钢铁材料性能预测和深度学习应用技术领域。本发明以EBSD的BC图为基础,利用深度学习方法卷积神经网络Convolutional Neural Network(CNN)建立钢铁材料组织(BC图)与性能间的对应关系,实现钢铁材料的性能预测。以EBSD的BC图为基础,利用深度学习方法卷积神经网络Convolutional Neural Network(CNN)建立钢铁材料组织(BC图)与性能间的对应关系,实现钢铁材料的性能预测。 | ||
搜索关键词: | 一种 基于 ebsd 深度 学习方法 钢铁 材料 性能 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110368798.5/,转载请声明来源钻瓜专利网。