[发明专利]用于分布式计算集群调度的深度强化学习模型训练方法、装置及调度方法有效
申请号: | 202110387715.7 | 申请日: | 2021-04-12 |
公开(公告)号: | CN113033806B | 公开(公告)日: | 2023-07-18 |
发明(设计)人: | 李清;郭嘉伟;江勇;刘冀洵;周建二 | 申请(专利权)人: | 鹏城实验室;清华大学深圳国际研究生院;南方科技大学 |
主分类号: | G06N3/092 | 分类号: | G06N3/092 |
代理公司: | 深圳市君胜知识产权代理事务所(普通合伙) 44268 | 代理人: | 温宏梅 |
地址: | 518000 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种用于分布式计算集群的深度强化学习模型训练方法、装置以及调度方法,所述方法包括采用深度强化学习框架建立若干第一调度模型和第二调度模型;通过若干第一调度模型确定训练样本集;基于训练样本集训练第二调度模型以得到模型参数;基于模型参数更新各第一调度模型中的第一深度强化学习智能体的模型参数,并继续执行通过若干第一调度模型确定训练样本集的步骤,直至第二调度模型满足预设条件以得到深度强化学习模型。本申请通过解耦深度强化学习训练的前向行动和后向学习过程,通过多个独立且同时与环境交互的第一调度模型生成训练样本集,再基于训练样本对第二调度模型进行训练,这样实现了大规模并行训练,提高了深度强化学习模型的训练速度,实现了分布式计算集群的高效利用。 | ||
搜索关键词: | 用于 分布式 计算 集群 调度 深度 强化 学习 模型 训练 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于鹏城实验室;清华大学深圳国际研究生院;南方科技大学,未经鹏城实验室;清华大学深圳国际研究生院;南方科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110387715.7/,转载请声明来源钻瓜专利网。