[发明专利]一种基于对抗学习的植物叶片图像细分类方法有效
申请号: | 202110423483.6 | 申请日: | 2021-04-20 |
公开(公告)号: | CN113159171B | 公开(公告)日: | 2022-07-22 |
发明(设计)人: | 金城;靳璐瑞;吴渊 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/44;G06V10/82;G06K9/62;G06N3/04;G06N3/08;G06T7/11 |
代理公司: | 上海正旦专利代理有限公司 31200 | 代理人: | 王洁平 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像分类技术领域,具体为一种基于对抗学习的植物叶片图像细分类方法。本发明通过将植物叶片图像多次分割打乱之后作为样本训练植物叶片图像细分类模型;最后将植物叶片图像经过同样的多重打乱操作之后输入到训练好的网络模型,计算并输出植物图片的细分类结果。相比于现有的植物细分类方法,本发明所提出的方法可以提取图片的多个粒度的特征,另外引入的全局上下文块可以融合图像的全局和局部特征,提高了网络融合多个粒度的特征的能力。 | ||
搜索关键词: | 一种 基于 对抗 学习 植物 叶片 图像 细分 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110423483.6/,转载请声明来源钻瓜专利网。