[发明专利]基于多视图关联特征学习的轴承故障诊断方法在审
申请号: | 202110473166.5 | 申请日: | 2021-04-29 |
公开(公告)号: | CN113255458A | 公开(公告)日: | 2021-08-13 |
发明(设计)人: | 江国乾;贾晨凌;谢平;赵小川;李小俚;李英伟;李陈;崔健 | 申请(专利权)人: | 燕山大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G01M13/045 |
代理公司: | 北京孚睿湾知识产权代理事务所(普通合伙) 11474 | 代理人: | 王冬杰 |
地址: | 066004 河北省*** | 国省代码: | 河北;13 |
权利要求书: | 暂无信息 | 说明书: | 暂无信息 |
摘要: | 本发明公开一种基于多视图关联特征学习的轴承故障诊断方法,将振动信号和电流信号视为不同的视图,基于多视图学习设计齿轮箱轴承振动信号与发电机电流特征的关联特征学习方法,应用于风电齿轮箱轴承的多故障诊断。该方法首先从振动和电流信号中提取小波包分频带时域统计特征得到初始的振动特征空间和电流特征空间,然后将振动与电流特征样本成对输入典型相关学习网络进行关联性特征学习,使电流与振动信号特征映射之间的相关性最大,实现振动和电流特征的增强性提取。本发明能够以无监督的方式学习振动与电流信号中的关联属性并获得共有故障特征信息,充分利用多传感信号的综合诊断优势,与单一信号特征方法相比,提高故障诊断的精度和可靠性。 | ||
搜索关键词: | 基于 视图 关联 特征 学习 轴承 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110473166.5/,转载请声明来源钻瓜专利网。