[发明专利]一种面向k-means聚类算法的联邦学习方法有效

专利信息
申请号: 202110473993.4 申请日: 2021-04-29
公开(公告)号: CN113222181B 公开(公告)日: 2022-05-17
发明(设计)人: 刘健;田志华;张睿;侯潇扬;任奎 申请(专利权)人: 浙江大学
主分类号: G06N20/20 分类号: G06N20/20;G06K9/62;G06N20/10
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 邱启旺
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向k‑means聚类算法的联邦学习方法,该方法包括纵向联邦学习与横向联邦学习。横向联邦学习,包括如下步骤:1)初始化K个聚类,不同参与者将本地样本分给距离该样本最近的聚类2)对每个聚类,计算该聚类的新的聚类中心。3)如果聚类中心发生变化,那么回到步骤1);纵向联邦学习,包括如下步骤:1)L个参与者分别在本地运行k‑means聚类算法得到T个聚类且做交集得到新的TL个聚类或AP聚类算法得到Ti个聚类且做交集得到新的个聚类。2)将新的个聚类中心作为输入样本,初始化K个聚类。3)将每个样本分给距离它最近的聚类。4)对每个聚类,计算该类的新的聚类中心。5)如果聚类中心发生变化,那么回到步骤3)。
搜索关键词: 一种 面向 means 算法 联邦 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110473993.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top