[发明专利]一种联合深度学习与基扩展模型的信道预测方法有效
申请号: | 202110479456.0 | 申请日: | 2021-04-30 |
公开(公告)号: | CN113206809B | 公开(公告)日: | 2022-11-15 |
发明(设计)人: | 杨丽花;聂倩;呼博;任露露;杨钦 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | H04L25/02 | 分类号: | H04L25/02;G06N3/04;G06N3/08 |
代理公司: | 南京苏科专利代理有限责任公司 32102 | 代理人: | 陈栋智 |
地址: | 210000 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了无线通信技术领域内的一种联合深度学习与基扩展模型的信道预测方法,包括以下步骤:步骤1,根据历史时刻的信道信息获取信道的相关矩阵;步骤2,对相关矩阵进行特征值分解,获得最优基函数;步骤3,利用基扩展模型对信道进行建模;步骤4,基于历史接收的导频信号与最优基函数,获取基系数估计值;步骤5,根据基系数估计值构建训练样本集;步骤6,利用训练样本集训练BP神经网络;步骤7,获得具有最优权重和阈值的信道预测模型;步骤8,基于信道预测模型进行线上预测;步骤9,将基系数预测值转换成频域信道矩阵。本发明具有较低的计算复杂度,且具有较高的预测精度,适用于未来高速移动环境下时变信道信息的高效获取。 | ||
搜索关键词: | 一种 联合 深度 学习 扩展 模型 信道 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110479456.0/,转载请声明来源钻瓜专利网。