[发明专利]一种基于改进深度残差分组卷积网络的脑电信号分类方法有效
申请号: | 202110488070.6 | 申请日: | 2021-05-06 |
公开(公告)号: | CN113065526B | 公开(公告)日: | 2022-05-31 |
发明(设计)人: | 陈万忠;于子航 | 申请(专利权)人: | 吉林大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04 |
代理公司: | 长春吉大专利代理有限责任公司 22201 | 代理人: | 朱世林;张晶 |
地址: | 130012 吉林省长春市*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于模式识别及脑电信号处理领域,涉及一种基于改进ResNeXt网络的脑电信号分类方法;包括脑电信号采集、预处理、特征提取、训练ResNeXt分类网络四部分;训练ResNeXt分类网络是指:划分训练集和测试集;构建改进ResNeXt脑电信号分类网络;训练改进后的ResNeXt脑电信号分类网络;构建改进ResNeXt脑电信号分类网络是指:在ResNeXt基础上改进,对分组卷积的每个block模块的中间一层卷积层增加直连操作,加快模型收敛的速度,降低模型的测试误差,提升泛化能力;本发明加快了分类模型的收敛速度,相对卷积神经网络脑电分类模型,改进后的ResNeXt分类模型更容易优化,有效地改善了深层次训练模型存在的梯度爆炸问题,在避免分类模型退化问题的同时能使网络的层数大大加深。 | ||
搜索关键词: | 一种 基于 改进 深度 分组 卷积 网络 电信号 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110488070.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种弯字机开槽机头机构
- 下一篇:孪生注意力网络、图像处理方法和装置