[发明专利]针对电力系统中深度学习惯量预测模型的脆弱性评估方法有效

专利信息
申请号: 202110535240.1 申请日: 2021-05-17
公开(公告)号: CN113361865B 公开(公告)日: 2022-07-19
发明(设计)人: 陈焱;孙铭阳;滕飞;邓瑞龙;程鹏;王文海 申请(专利权)人: 浙江大学
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q50/06;G06N3/04;G06N3/08
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 刘静
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种针对电力系统中深度学习惯量预测模型的脆弱性评估方法。构造数据集并划分为训练集、验证集和测试集;基于训练集构造基于线性回归的系统惯量预测模型;随机选取部分训练样本,基于上述模型生成投毒点,使攻击后的模型在系统低惯量水平区间输出攻击者期望的惯量预测值。分别基于原始训练集,投毒后训练集构造深度学习系统惯量预测模型;将测试集数据投入上述模型得到惯量预测值;利用测试集真实惯量、投毒前后的模型预测值对模型的脆弱性进行评估。本发明提供了一个通过强隐蔽性数据投毒对惯量预测系统特定区域进行定向攻击的方法,根据待测深度学习惯量预测模型在攻击前后评估指标的变化,就可实现对该模型的脆弱性评估。
搜索关键词: 针对 电力系统 深度 学习 惯量 预测 模型 脆弱 评估 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110535240.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top