[发明专利]用于脉冲神经网络的图表示时空反向传播算法在审
申请号: | 202110548714.6 | 申请日: | 2021-05-19 |
公开(公告)号: | CN113298231A | 公开(公告)日: | 2021-08-24 |
发明(设计)人: | 闫钰龙;褚皓明;环宇翔;梁龙飞;邹卓;郑立荣 | 申请(专利权)人: | 复旦大学;上海新氦类脑智能科技有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/06;G06N3/08 |
代理公司: | 无锡经诚知识产权代理事务所(普通合伙) 32504 | 代理人: | 丁雨燕 |
地址: | 200000 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及脉冲神经网络技术领域,具体是一种用于脉冲神经网络的图表示时空反向传播算法,通过神经元在网络结构中的网络前向传播获得脉冲神经网络;通过损失函数评估所述脉冲神经网络对任务的误差;通过误差反向传播对所述脉冲神经网络进行训练;通过神经网络优化算法完成训练过程中的参数更新。本发明通过误差反向传播提高了脉冲神经网络的准确率,通过稀疏正则化降低脉冲发放率从而提高了脉冲(事件)驱动计算下的能量效率,并通过图表示的方法适应于各种仿生网络结构的训练过程。 | ||
搜索关键词: | 用于 脉冲 神经网络 图表 时空 反向 传播 算法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学;上海新氦类脑智能科技有限公司,未经复旦大学;上海新氦类脑智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110548714.6/,转载请声明来源钻瓜专利网。