[发明专利]一种基于多模型融合卷积神经网络的PCB缺陷图像识别方法有效

专利信息
申请号: 202110552810.8 申请日: 2021-05-20
公开(公告)号: CN113344041B 公开(公告)日: 2022-12-23
发明(设计)人: 张健滔;瞿栋;汪鹏宇;黄允;徐海达 申请(专利权)人: 上海大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/80;G06V10/82;G06N3/04;G06N3/08
代理公司: 上海上大专利事务所(普通合伙) 31205 代理人: 何文欣
地址: 200444*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于改进卷积神经网络的PCB缺陷图像识别方法。针对现有ResNet50深度卷积神经网络模型的不足,引入名为Res2Net的新型CNN模块,并更改残差连接结构和激活函数,来提高网络多层的非线性扩展能力。基于改进ResNet50模型,融入DenseNet169卷积神经网络,基于多模型提取的图像特征进行融合,并对融合特征输出网络结构进行改进,建立了一种多模型融合的PCB缺陷图像识别的卷积神经网络框架。本发明方法可对不同类型的PCB缺陷图像进行识别,较单一模型具有识别准确率、敏感性高的特点,并且能够实现PCB缺陷类别的自动化和智能化识别。
搜索关键词: 一种 基于 模型 融合 卷积 神经网络 pcb 缺陷 图像 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海大学,未经上海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110552810.8/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top