[发明专利]基于深度学习的土地利用变化模拟方法有效
申请号: | 202110565706.2 | 申请日: | 2021-05-24 |
公开(公告)号: | CN113297174B | 公开(公告)日: | 2023-10-13 |
发明(设计)人: | 赵冰冰;谭骁勇;石岩;邓敏 | 申请(专利权)人: | 中南大学 |
主分类号: | G06F16/21 | 分类号: | G06F16/21;G06F16/2458;G06F16/29;G06N3/0464 |
代理公司: | 长沙永星专利商标事务所(普通合伙) 43001 | 代理人: | 周咏;米中业 |
地址: | 410083 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的土地利用变化模拟方法,包括获取历史土地利用数据,并进行预处理;将历史土地利用数据输入卷积神经网络,获取空间邻域特征;进行区位遥相关特征构建;融合空间邻域特征和区位遥相关特征,对样本特征进行欠采样处理;进行模型构建,对城市土地利用进行模拟演化,并对模型进行训练;将训练生成的土地利用模拟演化模型对土地利用变化进行预测。本发明在卷积神经网络中引入空洞卷积层,在扩大元胞感受野的同时兼顾局部特征,减少冗余特征的累积,进而实现对元胞空间邻域特征的构建;本发明基于图卷积神经网络感知地理场景遥相关,实现对地理区位条件相似的元胞关系的挖掘,处理精度更高。 | ||
搜索关键词: | 基于 深度 学习 土地利用 变化 模拟 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110565706.2/,转载请声明来源钻瓜专利网。