[发明专利]一种基于深度学习的双神经网络结构预测lncRNA-蛋白质相互作用方法有效
申请号: | 202110592443.4 | 申请日: | 2021-05-28 |
公开(公告)号: | CN113313167B | 公开(公告)日: | 2022-05-31 |
发明(设计)人: | 彭利红;王畅;周立前;田雄飞 | 申请(专利权)人: | 湖南工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G16B5/00;G16B40/00 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 杨千寻;杜梅花 |
地址: | 412000 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度学习的双神经网络结构预测lncRNA-蛋白质相互作用方法。首先,LPI特征提取:先获取已知的lncRNA序列、蛋白质序列,分别用Pyfeat和BioTriangle提取lncRNA和蛋白质的特征;然后,特征降维:基于主成分分析(PCA)分别对lncRNA和蛋白质原始特征进行降维,在降维之后将这些特征连接成一个向量;其次,建立LPI预测框架模型:建立由FIR网络和MLP网络组成的双神经网络结构的深度学习模型;最后,利用双神经网络结构对未知lncRNA‑蛋白质对进行分类。本发明比利用实验手段探测大规模的lncRNA‑蛋白质交互作用耗时更少,费用更低,可以实现对多个数据集进行训练和测试,预测偏差小,预测性能好,预测结果准确,并可以用于寻找新的lncRNA‑蛋白质关联对。 | ||
搜索关键词: | 一种 基于 深度 学习 神经网络 结构 预测 lncrna 蛋白质 相互作用 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南工业大学,未经湖南工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110592443.4/,转载请声明来源钻瓜专利网。
- 上一篇:血管结扎装置
- 下一篇:碳酸盐岩溶蚀-冲剪交互作用试验系统及测试方法