[发明专利]多层卷积稀疏编码的加权递归去噪深度神经网络及方法在审

专利信息
申请号: 202110598910.4 申请日: 2021-05-31
公开(公告)号: CN113344811A 公开(公告)日: 2021-09-03
发明(设计)人: 王建军;文泽珈;周敏;龚英凡;吴松 申请(专利权)人: 西南大学
主分类号: G06T5/00 分类号: G06T5/00;G06N3/04;G06N3/08
代理公司: 重庆市信立达专利代理事务所(普通合伙) 50230 代理人: 任苇
地址: 400715*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提出了一种基于多层卷积稀疏编码(MLCSC)模型的端对端的加权递归去噪卷积神经网络WRDnCN‑LISTA+,该模型以展开的多层学习迭代软阈值算法(ML‑LISTA)为基础,引入递归加权监督机制实现自然图像去噪。展开的ML‑LISTA算法可以和卷积神经网络实现一一对应,加权监督机制也可以改善由简单的递归结构在深层网络中带来的退化问题。引入的可学习权值利用所有中间递归的输出结果,既减弱了不同递归次数对网络性能的影响,也增强去噪性能。递归网络特有的参数共享性质,使构造一个深度卷积神经网络所耗费的参数成本减少,并且保证通过最小化损失函数,可利用反向传播自适应更新模型中的所有参数。
搜索关键词: 多层 卷积 稀疏 编码 加权 递归 深度 神经网络 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南大学,未经西南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110598910.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top