[发明专利]一种基于聚类与预训练模型结合的命名实体识别方法在审
申请号: | 202110602241.3 | 申请日: | 2021-05-31 |
公开(公告)号: | CN113283242A | 公开(公告)日: | 2021-08-20 |
发明(设计)人: | 朱磊;吴江浩;黑新宏;王一川;姬文江 | 申请(专利权)人: | 西安理工大学 |
主分类号: | G06F40/295 | 分类号: | G06F40/295;G06F40/30;G06F40/211;G06K9/62;G06N3/04;G06N3/08;G06N20/00 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 韩玙 |
地址: | 710048 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于机器学习与Bert模型结合的命名实体识别方法对Bert训练后的结果结合机器学习的方法来改进Bert与NER任务的精确度。首先对Bert的结果提取其中的每个词的特征向量。首次迭代时,首先通过Canopy算法确定往后计算的聚类的簇个数K与迭代的初始点,避免了认为确定簇个数与随机选择迭代初始点时对程序运行效率与运行结果的人为因素。通过不断迭代运算,最终确定K个簇中的个个节点集,将节点集返回结果与Bert结果中的[CLS]结合,真正做到TopicBert的作用,并在运用训练后的参数进行NER或其他任务中提高效果。 | ||
搜索关键词: | 一种 基于 训练 模型 结合 命名 实体 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110602241.3/,转载请声明来源钻瓜专利网。