[发明专利]基于多元激活函数的稀疏正则化神经网络的图像分类方法在审

专利信息
申请号: 202110610837.8 申请日: 2021-05-28
公开(公告)号: CN113313175A 公开(公告)日: 2021-08-27
发明(设计)人: 林宙辰;徐鑫 申请(专利权)人: 北京大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08;G06F16/55
代理公司: 北京万象新悦知识产权代理有限公司 11360 代理人: 黄凤茹
地址: 100871*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公布了一种基于多元激活函数的稀疏正则化神经网络模型的图像分类方法,通过学习多元激活函数进一步学习多元稀疏正则化神经网络模型,即稀疏正则化子或稀疏正则化器,用于高效地进行图像分类。采用本发明的多元激活函数将任意一个已有CNN模型中的激活函数进行正则化,得到一个多元正则化的CNN模型,再用该模型进行图像分类,由此达到用更少的模型参数,且能降低图像分类的错误率。
搜索关键词: 基于 多元 激活 函数 稀疏 正则 神经网络 图像 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110610837.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top