[发明专利]少样本元提升学习的列车运动状态估计方法有效
申请号: | 202110617467.0 | 申请日: | 2021-05-28 |
公开(公告)号: | CN113255225B | 公开(公告)日: | 2022-09-20 |
发明(设计)人: | 罗森林;崔成钢;刘晓双;潘丽敏 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06K9/62;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及少样本元提升学习的列车运动状态估计方法,属于计算机与信息科学技术领域。主要为解决现有的列车运动状态建模方法无论是物理模型或是机器学习模型,均存在高成本建模问题,难以针对特定列车实现模型在线持续自适应以精确仿真,存在系统性仿真误差,而且难以满足列车自动驾驶系统的实时仿真等应用需求问题。本发明首先基于元数据采用元梯度提升学习算法建立模型,然后面向新任务,基于少量数据采用任务梯度提升学习算法,完成任务模型学习,实现对新列车的快速低成本精确仿真。结果表明本发明能较为准确的估计的列车运动状态,既减少了模型的训练成本,又提高了列车运动状态估计的精确度。 | ||
搜索关键词: | 样本 提升 学习 列车 运动 状态 估计 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110617467.0/,转载请声明来源钻瓜专利网。