[发明专利]一种基于数据增强的分布外异常样本检测方法在审
申请号: | 202110635014.0 | 申请日: | 2021-06-08 |
公开(公告)号: | CN113392890A | 公开(公告)日: | 2021-09-14 |
发明(设计)人: | 王崇骏;姜文玉;杜云涛;朱志威;李宁 | 申请(专利权)人: | 南京大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N20/00 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 孙建朋 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于数据增强的分布外异常样本检测方法。特征提取阶段,使用自动编码器算法的编码器部分,提取输入分布内样本的特征向量;数据增强和重建阶段,使用基于特征的数据增强方法对特征提取阶段提取到的特征进行变换,并使用自动编码器的解码器部分,从增强后的特征向量中生成数量充足且包含语义信息的辅助分布外异常样本数据集;样本标记阶段,将原始分类器对重建样本的预测准确度作为分布外异常样本的软标签值;分类器重训练阶段,联合包含硬标签监督信号的分布内训练数据集及包含软标签监督信号辅助分布外异常样本数据集,重新训练分类器;本发明改善了深度神经网络模型在预测分布外异常样本时的不确定性,提升了模型的安全性。 | ||
搜索关键词: | 一种 基于 数据 增强 分布 异常 样本 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110635014.0/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置