[发明专利]一种基于噪声标签学习的众包获取标签数据清洗方法有效
申请号: | 202110645466.7 | 申请日: | 2021-06-10 |
公开(公告)号: | CN113361201B | 公开(公告)日: | 2023-08-25 |
发明(设计)人: | 王崇骏;陈明猜;姜文玉;商一帆;张雷 | 申请(专利权)人: | 南京大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06N3/04;G06N3/084;G06F111/08;G06F119/10 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 陈建和 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于噪声标签学习的众包获取标签数据清洗方法,在模型热启动阶段,使用带有噪声的标签数据初步训练深度模型;在噪声分离阶段,通过模型对训练数据进行预测,计算噪声标签与预测类别间的损失,采用高斯混合模型拟合损失的分布,得到各个数据在属于均值较小子分布的概率,依据该概率的大小将数据分为纯净数据和噪声数据两部分;在重新训练阶段,使用有更大概率为纯净数据的一部分重新训练模型;最后根据深度模型中数据损失的大小进行噪声清洗;本发明对众包获取的带噪声标签数据进行清洗,可大幅提高众包获取数据的质量;并且结合了深度学习模型的拟合能力,可以纠正特征与标签依赖关系复杂时的噪声标签。 | ||
搜索关键词: | 一种 基于 噪声 标签 学习 获取 数据 清洗 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110645466.7/,转载请声明来源钻瓜专利网。