[发明专利]一种基于贡献量的联邦学习客户机选择方法、系统及介质有效
申请号: | 202110717168.4 | 申请日: | 2021-06-28 |
公开(公告)号: | CN113378474B | 公开(公告)日: | 2022-09-20 |
发明(设计)人: | 林伟伟;许银海 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06F111/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于贡献量的联邦学习客户机选择方法、系统及介质。该方法包括:初始化选择权重;计算客户机选择概率;选择客户机集合进行本地训练;计算客户机贡献量;无偏估计并更新选择权重;迭代训练。本发明定义客户机对全局模型准确率的提高量作为客户机的贡献量,基于贡献量更新客户机的选择权重,为性能优异的客户机和本地数据集优质的客户机分配高选择概率,降低性能差和数据集恶劣的客户机选择概率,提高最终聚合模型收敛速度和效果。另外,本发明可通过调节客户机贡献量的无偏估计的调节系数θ,满足不同场景需求,如追求全局模型准确率、模型收敛速度或者两者的有效平衡,具有很强的适应性。 | ||
搜索关键词: | 一种 基于 贡献 联邦 学习 客户机 选择 方法 系统 介质 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110717168.4/,转载请声明来源钻瓜专利网。