[发明专利]基于元学习及深度学习的少样本社交媒体谣言检测方法有效
申请号: | 202110770088.5 | 申请日: | 2021-07-07 |
公开(公告)号: | CN113377959B | 公开(公告)日: | 2022-12-09 |
发明(设计)人: | 陆恒杨;范晨悠;杨舜;吴小俊 | 申请(专利权)人: | 江南大学 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06F16/33;G06F16/335;G06F40/126;G06N20/00 |
代理公司: | 苏州市中南伟业知识产权代理事务所(普通合伙) 32257 | 代理人: | 夏苏娟 |
地址: | 214122 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于元学习及深度学习的少样本社交媒体谣言检测方法,包括:通过大样本事件的文本数据和双向GRU模型得到通用预测模型,获取少样本事件的文本数据并将少样本事件的谣言检测任务建模为二分类机器学习任务,将少样本事件的文本数据分为有标注少样本和无标注少样本,使用有标注少样本更新通用预测模型的参数得到少样本谣言预测模型,将无标注少样本输入少样本谣言预测模型得到预测结果。本发明通过元学习方法构造少样本谣言预测模型和二分类机器学习任务,对突发事件相关文本进行有效的谣言预测,从而在早期及时遏制谣言的传播。 | ||
搜索关键词: | 基于 学习 深度 样本 社交 媒体 谣言 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110770088.5/,转载请声明来源钻瓜专利网。