[发明专利]基于联邦学习的模型训练方法、装置、系统、设备和介质在审
申请号: | 202110799022.9 | 申请日: | 2021-07-15 |
公开(公告)号: | CN113537512A | 公开(公告)日: | 2021-10-22 |
发明(设计)人: | 陈录城;李晓璐;张成龙;孙明;贾淇超;诸葛慧玲 | 申请(专利权)人: | 青岛海尔工业智能研究院有限公司;海尔卡奥斯物联生态科技有限公司;海尔数字科技(青岛)有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00;G06F21/60 |
代理公司: | 北京品源专利代理有限公司 11332 | 代理人: | 康亚健 |
地址: | 266510 山东省青岛市黄岛*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例涉及一种基于联邦学习的模型训练方法、装置、系统、设备和介质,具体涉及机器学习技术领域,方法包括:基于联邦学习的模型训练方法,其特征在于,由各私有云端服务器执行,包括:获取本地数据,将所获取的本地数据经过本地模型识别后,根据识别结果生成样本集共享给公有云端服务器,以使所述公有云端服务器采用所述样本集对联合模型进行训练并共享所述联合模型,其中所述样本集的数据量小于所述本地数据的数据量;下载所述联合模型,用所下载的联合模型替换本地模型。本发明实施例的技术方案能够在避免大量工业数据泄露的同时,保证了模型训练的效果。 | ||
搜索关键词: | 基于 联邦 学习 模型 训练 方法 装置 系统 设备 介质 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛海尔工业智能研究院有限公司;海尔卡奥斯物联生态科技有限公司;海尔数字科技(青岛)有限公司,未经青岛海尔工业智能研究院有限公司;海尔卡奥斯物联生态科技有限公司;海尔数字科技(青岛)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110799022.9/,转载请声明来源钻瓜专利网。