[发明专利]基于图低秩稀疏分解的极化SAR图像特征挖掘方法有效
申请号: | 202110801147.0 | 申请日: | 2021-07-15 |
公开(公告)号: | CN113344013B | 公开(公告)日: | 2023-06-30 |
发明(设计)人: | 李亚超;张宇璇;张鹏 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06V10/44 | 分类号: | G06V10/44;G06V10/764;G06V10/30;G06V10/77;G06T3/40 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 田文英;王品华 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于图低秩稀疏分解的极化SAR图像特征挖掘方法,用于解决提取的数据受到噪声干扰以及现有技术提取数据缺少像素间的相关性的问题。本发明的实现步骤为:去除极化SAR图像中的相干斑噪声;利用极化目标分解法,从滤波后的极化SAR图像中提取极化特征;对数据特征矩阵进行Pauli分解;利用SLIC法分割伪彩图;生成数据样本;构建图低秩稀疏模型;利用交替方向乘数法求解模型;利用广义主成分分析算法对特征挖掘后的低秩矩阵进行数据降维。本发明利用像素间相关性构建模型,利用分解模型得到的稀疏矩阵去除噪声,得到具有像素相关性且不受噪声干扰的低秩矩阵。 | ||
搜索关键词: | 基于 图低秩 稀疏 分解 极化 sar 图像 特征 挖掘 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110801147.0/,转载请声明来源钻瓜专利网。