[发明专利]一种基于深度学习的UWB非视距信号识别方法在审

专利信息
申请号: 202110809540.4 申请日: 2021-07-15
公开(公告)号: CN113469110A 公开(公告)日: 2021-10-01
发明(设计)人: 于秀丽;杨奉豪;魏世民;董明帅;白宇轩;吴澍;周麟坤 申请(专利权)人: 北京邮电大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04
代理公司: 暂无信息 代理人: 暂无信息
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的超宽带(Ultra Wide Band,UWB)非视距信号(None‑Line‑Of‑Sight,NLOS)识别方法。该方法以信号的信道脉冲响应(ChannelImpulse Response,CIR)作为输入,使用双流神经网络提取信号特征,可实现非视距信号(NLOS)与视距信号(Line‑Of‑Sight,LOS)的识别。该双流神经网络的一路借鉴了ResNet18中的残差结构,以1016个时刻的CIR信号作为输入,提取信号的时域特征;另一路使用一个卷积神经网络(CNN)提取10个额外参数中的特征。为了减小输入数据中的噪声干扰并放大NLOS与LOS信号的差异性,本发明提出了一种新的能量归一化方法。此外,本发明提出了一个专用于识别NLOS和LOS信号的损失函数,使用该损失函数训练神经网络,可以加快网络收敛速度,提升识别精度。
搜索关键词: 一种 基于 深度 学习 uwb 视距 信号 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110809540.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top