[发明专利]一种基于领域损失预测主动学习的玻璃缺陷检测方法在审
申请号: | 202110831710.9 | 申请日: | 2021-07-22 |
公开(公告)号: | CN113658109A | 公开(公告)日: | 2021-11-16 |
发明(设计)人: | 刘贵松;解修蕊;张邵楷;占求港;黄鹂;杨新 | 申请(专利权)人: | 西南财经大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都弘毅天承知识产权代理有限公司 51230 | 代理人: | 朱丹 |
地址: | 611130 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于领域损失预测主动学习的玻璃缺陷检测方法,该方法定义了一个损失预测模型,该模型能与多标签分类模型共同训练优化,并对未标注样本池中的玻璃样本进行损失预测,排序后取前K个预测损失值最大的玻璃样本作为主动学习挑选出的高价值样本,标注后加入标注样本集中,用于训练多标签分类模型,从而对待检测玻璃中存在的缺陷类型进行识别。使用该方法能够有效提升模型在较小多标签图像样本量下的分类准确率,从而用较少的数据量使模型效果达到预期,降低样本标注成本。 | ||
搜索关键词: | 一种 基于 领域 损失 预测 主动 学习 玻璃 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南财经大学,未经西南财经大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110831710.9/,转载请声明来源钻瓜专利网。