[发明专利]一种端边云联邦学习模型训练系统及方法有效
申请号: | 202110887349.1 | 申请日: | 2021-08-03 |
公开(公告)号: | CN113591999B | 公开(公告)日: | 2023-08-01 |
发明(设计)人: | 朱孔林;陈文韬;张琳 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F18/214 | 分类号: | G06F18/214;G06F21/62;G06N20/00 |
代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 项京;赵元 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请实施例提供了一种端边云联邦学习模型训练系统及方法,应用于模型训练的技术领域,可以根据获取样本数据的成本、预设的不同准确率对应的联邦学习成本和预设的不同模型准确率对应的模型损失,计算待训练的联邦学习模型的总训练成本最低时的模型准确率,得到目标准确率,并根据样本数据对待训练的联邦学习模型进行训练,得到满足目标准确率的联邦学习模型,从而不但可以保证联邦学习模型的准确率,还可以降低联邦学习模型的训练成本。 | ||
搜索关键词: | 一种 端边云 联邦 学习 模型 训练 系统 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110887349.1/,转载请声明来源钻瓜专利网。