[发明专利]一种基于分层自适应的联邦学习方法、装置、设备及介质在审
申请号: | 202110921298.X | 申请日: | 2021-08-11 |
公开(公告)号: | CN113705634A | 公开(公告)日: | 2021-11-26 |
发明(设计)人: | 秦涛;惠维;杨和;丁菡 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 崔方方 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于分层自适应的联邦学习方法、装置、设备及介质,所述方法包括以下步骤:将待训练模型划分为浅层模型和深层模型;对浅层模型和深层模型进行同步联邦训练,获得训练好的浅层模型和深层模型;将训练好的浅层模型和深层模型进行拼接,完成所述基于分层自适应的联邦学习。本发明的联邦学习方法,能够统筹考虑并解决上述模型性能问题、通讯成本问题和数据隐私问题,经实验验证,本发明的联邦学习方法与其他方法对比,在保证较高模型性能的同时,保持了较低的通讯量,同时提供数学严格的隐私保护。 | ||
搜索关键词: | 一种 基于 分层 自适应 联邦 学习方法 装置 设备 介质 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110921298.X/,转载请声明来源钻瓜专利网。