[发明专利]基于样本高斯不确定性建模的特征度量损失分类方法在审
申请号: | 202110926392.4 | 申请日: | 2021-08-12 |
公开(公告)号: | CN113642636A | 公开(公告)日: | 2021-11-12 |
发明(设计)人: | 徐颖;蔡大森;郑润晓;唐文涛;陈晓清;张文杰 | 申请(专利权)人: | 深圳大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 深圳市君胜知识产权代理事务所(普通合伙) 44268 | 代理人: | 陈专;朱阳波 |
地址: | 518060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于样本高斯不确定性建模的特征度量损失分类方法,本发明提供的基于样本高斯不确定性建模的特征度量损失分类方法中,首先根据当前的特征提取模型对训练批次中每个训练样本进行特征提取,对于训练批次中的参考样本,根据参考样本所在的类别的特征的平均值确定该参考样本的概率密度分布,再根据每个参考样本的正样本和负样本到参考样本的概率密度分布的距离对特征提取模型的参数进行更新,这样,在模型训练过程中考虑了样本分布的不确定性,从而使得样本的分布信息可以在模型训练过程中同时被学习得到,对于简单样本而言可以对模型提供额外的梯度信息,从而使得数据的利用率显著提高,训练效率提升。 | ||
搜索关键词: | 基于 样本 不确定性 建模 特征 度量 损失 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110926392.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种节能型门窗的角部拼接连接件型材结构
- 下一篇:结构用钢双流辊压成型装置