[发明专利]一种基于卷积神经网络的MAX-DOAS光谱预测对流层NO2有效

专利信息
申请号: 202110967743.6 申请日: 2021-08-23
公开(公告)号: CN113689035B 公开(公告)日: 2023-06-20
发明(设计)人: 田鑫;潘屹峰;谢品华;李昂;徐晋;任博;黄骁辉;田伟 申请(专利权)人: 安徽大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06N3/048;G06N3/08;G01N21/25;G06N3/0464
代理公司: 合肥兴东知识产权代理有限公司 34148 代理人: 吕维平
地址: 230601 安徽*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于卷积神经网络的MAX‑DOAS光谱预测对流层NO2廓线的方法,所述方法通过卷积神经网络,将对齐的多仰角MAX‑DOAS光谱数据和PriAM算法反演的对流层NO2数据结合,建立可实现对流层NO2廓线预测的卷积神经网络模型;卷积神经网络模型(CNN)通过卷积层来提取数据特征,池化层用来降维和防止模型的过拟合,最后利用全连接层来输出结果。本发明解决了对流层NO2廓线在线实时预测问题,能够根据MAX‑DOAS光谱快速准确直观的得到对流层NO2廓线,减少了QDOAS拟合和廓线反演算法反演立体分布的进程,避免了在该过程中出现的误差;一方面对对流层NO2廓线进行预测有助于监测NO2在对流层上的浓度变化趋势,对于NO2污染的评估,分析造成污染的原因有着重大的意义。
搜索关键词: 一种 基于 卷积 神经网络 max doas 光谱 预测 对流层 no base sub
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110967743.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top